LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Optimization of Charge Transport Properties in a Triple-Cation Perovskite Layer and Triple-Cation Perovskite/Spiro-OMeTAD Interface by Dual Passivation

Photo from wikipedia

Molecular engineering of additives is a highly effective method to increase the efficiency of perovskite solar cells by reducing trap states and charge carrier barriers in bulk and on the… Click to show full abstract

Molecular engineering of additives is a highly effective method to increase the efficiency of perovskite solar cells by reducing trap states and charge carrier barriers in bulk and on the thin film surface. In particular, the elimination of undercoordinated lead species that act as the nonradiative charge recombination center or contain defects that may limit interfacial charge transfer is critical for producing a highly efficient triple-cation perovskite solar cell. Here, 2-iodoacetamide (2I-Ac), 2-bromoacetamide (2Br-Ac), and 2-chloroacetamide (2Cl-Ac) molecules, which can be coordinated with lead, have been used by adding them into a chlorobenzene antisolvent to eliminate the defects encountered in the triple-cation perovskite thin film. The passivation process has been carried out with the coordination between the oxygen anion (−) and the lead (+2) cation on the enolate molecule, which is in the resonance structure of the molecules. The Spiro-OMeTAD/triple-cation perovskite interface has been improved by surface passivation by releasing HX (X = I, Br) as a byproduct because of the separation of alpha hydrogen on the molecule. As a result, a solar cell with a negligible hysteresis operating at 19.5% efficiency has been produced by using the 2Br-Ac molecule, compared to the 17.6% efficiency of the reference cell.

Keywords: triple cation; cation perovskite; charge; passivation; cation

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.