LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consequences of Tuning Rare-Earth RE3+-Site and Exchange–Correlation Energy U on the Optoelectronic, Mechanical, and Thermoelectronic Properties of Cubic Manganite Perovskites REMnO3 for Spintronics and Optoelectronics Applications

Photo by mbrunacr from unsplash

Both rare-earth SmMnO3 and EuMnO3 compounds that belong to transition-metal-based manganite perovskites REMnO3 have been studied deeply in this paper. The structural, elastic, optoelectronic, magnetic, mechanical, and thermoelectronic properties of… Click to show full abstract

Both rare-earth SmMnO3 and EuMnO3 compounds that belong to transition-metal-based manganite perovskites REMnO3 have been studied deeply in this paper. The structural, elastic, optoelectronic, magnetic, mechanical, and thermoelectronic properties of cubic SmMnO3 and EuMnO3 compounds have been computed using the full-potential linearized augmented plane-wave (FP-APLW) method in the frame of density functional theory (DFT). To compute the ground-state energy, the effect of exchange–correlation potential was treated via the application of generalized gradient approximation within Perdew, Burke, and Ernzerhof (PBE-GGA) plus its corrected method (GGA + U). The spin-polarized results of band structures, density of states (DOS), and magnetic moments show that SmMnO3 and EuMnO3 have ferromagnetic half-metallic (FM-HM) behavior. Optical responses of dielectric function (ε(ω)) are explained by computing the real ε1(ω) and imaginary ε2(ω) parts of ε(ω), refractive index n(ω), extinction coefficient k(ω), absorption coefficient α(ω), optical conductivity σ(ω), reflectivity R(ω), and energy loss function L(ω) using GGA and GGA + U. Also, we computed and discussed the thermoelectronic properties of SmMnO3 and EuMnO3, including Seebeck coefficient (S), holes and electrons charge carrier concentration (n), electrical conductivity (σ/τ), power factor (S2σ/τ), figure of merit (ZT), thermal conductivity (κ), and specific heat capacity (CV), as a function of temperature (T), using GGA and GGA + U methods based on BoltzTrap scheme. The present results confirm the perfect mechanical and thermal stability of two perovskites which make SmMnO3 and EuMnO3 promising materials for spintronics, optoelectronics, high-temperature, and other related applications.

Keywords: manganite perovskites; thermoelectronic properties; energy; rare earth; smmno3 eumno3; gga

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.