LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reflection Mechanism of Dielectric Corner Reflectors: The Role of the Diffraction of Evanescent Waves and the Goos–Hänchen Shift

Photo by lgnwvr from unsplash

Nano- and microstructures have been developed for asymmetric light transmission (ALT) filters operating in a wide wavelength range. One of the most straightforward structures with ALT properties is a dielectric… Click to show full abstract

Nano- and microstructures have been developed for asymmetric light transmission (ALT) filters operating in a wide wavelength range. One of the most straightforward structures with ALT properties is a dielectric corner reflector (DCR) comprising a one-dimensional grating of a triangular shape on one surface. The DCR possesses strong reflection only for one-way light illumination due to multiple total internal reflections (TIRs) inside the triangular grating. For triangular structures being much larger than the wavelength of light, the reflection properties are expected to be fully described by geometrical optics. However, geometrical optics do not account for the Goos–Hänchen (GH) shift, which is caused by the evanescent wave of the TIR. In this work, the reflection mechanism of DCRs is elucidated using the finite element method and a quantitative model built by considering the GH shift. The reduction in reflection of the DCR is dominated by diffraction of the evanescent wave at the corner of the triangular structure. Our model is based on simple mathematics and can optimize the DCR geometry for applications addressing a wide wavelength range such as radiative cooling.

Keywords: goos nchen; dielectric corner; nchen shift; corner; reflection

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.