LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient and Recyclable Solid-Supported Pd(II) Catalyst for Microwave-Assisted Suzuki Cross-Coupling in Aqueous Medium

Photo from wikipedia

Solid-supported catalysts play efficient and crucial roles in organic synthesis. A solid-supported palladium(II) complex based on chitosan was synthesized and fully characterized using all possible tools (Fourier transform infrared spectroscopy,… Click to show full abstract

Solid-supported catalysts play efficient and crucial roles in organic synthesis. A solid-supported palladium(II) complex based on chitosan was synthesized and fully characterized using all possible tools (Fourier transform infrared spectroscopy, thermogravimetry analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller analysis). The catalytic activity of the solid-phase catalyst in Suzuki cross-coupling reactions was evaluated in aqueous solvents under both conventional heating and microwave irradiation conditions. The recyclability and thermal stability of the prepared catalyst were also examined, and the catalyst was found to be active till five consecutive runs without a notable loss of activity under the microwave condition, with the turnover number and turnover frequency values reaching 19,019 and 114,114 h–1, respectively.

Keywords: catalyst; cross coupling; spectroscopy; microscopy; suzuki cross; solid supported

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.