LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Pathway for the Preparation of Pyrano[2,3-c]pyrazoles and molecular Docking as Inhibitors of p38 MAP Kinase

Photo by robertbye from unsplash

We report a new pathway to synthesize pyrano[2,3-c]pyrazoles and their binding mode to p38 MAP kinase. Pyrano[2,3-c]pyrazole derivatives have been prepared through a four-component reaction of benzyl alcohols, ethyl acetoacetate,… Click to show full abstract

We report a new pathway to synthesize pyrano[2,3-c]pyrazoles and their binding mode to p38 MAP kinase. Pyrano[2,3-c]pyrazole derivatives have been prepared through a four-component reaction of benzyl alcohols, ethyl acetoacetate, phenylhydrazine, and malononitrile in the presence of sulfonated amorphous carbon and eosin Y as catalysts. All products were characterized by melting point, 1H and 13C NMR, and HRMS (ESI). The products were screened in silico for their binding activities to both the ATP-binding pocket and the lipid-binding pocket of p38 MAP kinase, using a structure-based flexible docking provided by the engine ADFR. The results showed that eight synthesized compounds had a higher affinity to the lipid pocket than to the other target site, which implied potential applications as allosteric inhibitors. Finally, the most biologically active compound, 5, had a binding affinity comparable to those of other proven lipid pocket inhibitors, with affinity to the target pocket reaching −10.9932 kcal/mol, and also had the best binding affinity to the ATP-binding pockets in all of our products. Thus, our research provides a novel pathway for synthesizing pyrano[2,3-c]pyrazoles and bioinformatic evidence for their biological capability to block p38 MAP kinase pockets, which could be useful for developing cancer or immune drugs.

Keywords: pyrano pyrazoles; new pathway; pocket; p38 map; map kinase

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.