The anticancer activity of epigallocatechin-3-gallate (EGCG), orally administrated, is limited by poor bioavailability, absorption, and unpredictable distribution in human tissues. EGCG charged nanoparticles may represent an opportunity to overcome these… Click to show full abstract
The anticancer activity of epigallocatechin-3-gallate (EGCG), orally administrated, is limited by poor bioavailability, absorption, and unpredictable distribution in human tissues. EGCG charged nanoparticles may represent an opportunity to overcome these limitations. We assayed two different kinds of lipid nanoparticles (LNPs and LNPs functionalized with folic acid) charged with EGCG on three breast carcinoma cell lines (MCF-7, MDA-MB-231, and MCF-7TAM) and the human normal MCF10A mammary epithelial cells. Both LNPs loaded with EGCG, at low concentrations, induced a significant cytotoxicity in the three breast carcinoma cells but not in MCF10A cells. In view of a future application, both LNPs and LNPs-FA were found to be very suitable for in vitro studies and useful to improve EGCG administration in vivo. Since they are produced by inexpensive procedures using bioavailable, biocompatible, and biodegradable molecules, they represent an applicable tool for a more rationale use of EGCG as an anti-cancer agent.
               
Click one of the above tabs to view related content.