LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and Solar Heating

Photo by mbrunacr from unsplash

Traditional electric cooling in summer and coal heating in winter consume a huge amount of energy and lead to a greenhouse effect. Herein, we developed an energy-free dual-mode superhydrophobic film,… Click to show full abstract

Traditional electric cooling in summer and coal heating in winter consume a huge amount of energy and lead to a greenhouse effect. Herein, we developed an energy-free dual-mode superhydrophobic film, which consists of a white side with porous coating of styrene-ethylene-butylene-styrene/SiO2 for radiative cooling and a black side with nanocomposite coating of carbon nanotubes/polydimethylsiloxane for solar heating. In the cooling mode with the white side, the film achieved a high sunlight reflection of 94% and a strong long-wave infrared emission of 92% in the range of 8–13 μm to contribute to a temperature drop of ∼11 °C. In the heating mode with the black side, the film achieved a high solar absorption of 98% to induce heating to raise the air temperature beneath by ΔT of ∼35.6 °C. Importantly, both sides of the film are superhydrophobic with a contact angle over 165° and a sliding angle near 0°, showing typical self-cleaning effects, which defend the surfaces from outdoor contamination, thus conducive to long-term cooling and heating. This dual-mode film shows great potential in outdoor applications as coverings for both cooling in hot summer and heating in winter without an energy input.

Keywords: energy free; film; dual mode; heating

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.