LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetics of Nucleophilic Substitution of Compounds Containing Multiple Leaving Groups Bound to a Neopentyl Skeleton

Photo by souravdnath1 from unsplash

Ammonium salt derivatives with a neopentyl moiety are remarkably stable against Hofmann elimination, but the neopentyl moiety slows nucleophilic substitution, complicating their synthesis. To identify the best leaving group for… Click to show full abstract

Ammonium salt derivatives with a neopentyl moiety are remarkably stable against Hofmann elimination, but the neopentyl moiety slows nucleophilic substitution, complicating their synthesis. To identify the best leaving group for the synthesis of the ammonium salts, we prepared six 1,1,1-tris(X-methyl)ethane derivatives, where X is chloride, bromide, iodide, methanesulfonate, p-toluenesulfonate, and trifluoromethanesulfonate (triflate), and studied the kinetics of their reactions with sodium, cesium, or tetramethylammonium azide in deuterated dimethylsulfoxide (DMSO) at 100 °C by NMR spectroscopy. Iodide and bromide were found to be more reactive than p-toluenesulfonate and methanesulfonate. As expected, the best leaving group for nucleophilic substitution was triflate. Despite the usual high reactivity and instability of primary alkyl triflates, neopentyl triflate can be used as a stable but sufficiently reactive reactant for nucleophilic substitution on neopentyl skeletons.

Keywords: substitution compounds; substitution; compounds containing; nucleophilic substitution; kinetics nucleophilic; containing multiple

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.