LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Reduction of Cr(VI) with Carbon Quantum Dots

Photo from wikipedia

Hexavalent chromium (Cr(VI)) pollution is a global problem, and the reduction of highly toxic Cr(VI) to less toxic Cr(III) is considered to be an effective method to address Cr(VI) pollution.… Click to show full abstract

Hexavalent chromium (Cr(VI)) pollution is a global problem, and the reduction of highly toxic Cr(VI) to less toxic Cr(III) is considered to be an effective method to address Cr(VI) pollution. In this study, low-toxicity carbon quantum dots (CQDs) were used to reduce Cr(VI) in wastewater. The results show that CQDs can directly reduce Cr(VI) at pH 2 and can achieve a reduction efficiency of 94% within 120 min. It is observed that under pH higher than 2, CQDs can activate peroxymonosulfate (PMS) to produce reactive oxygen species (ROS) for the reduction of Cr(VI) and the reduction efficiency can reach 99% within 120 min even under neutral conditions. The investigation of the mechanism shows that the hydroxyl groups on the surface of CQDs can be directly oxidized by Cr(VI) because of the higher redox potential of Cr(VI) at pH 2. As the pH increases, the carbonyl groups on the surface of CQDs can activate PMS to generate ROS, O2•–, and 1O2, which result in Cr(VI) being reduced. To facilitate the practical application of CQDs, the treatment of Cr(VI) in real water samples by CQDs was simulated and the method reduced Cr(VI) from an initial concentration of 5 mg/L to only 8 μg/L in 150 min, which is below the California water quality standard of 10 μg/L. The study provides a new method for the removal of Cr(VI) from wastewater and a theoretical basis for practical application.

Keywords: carbon quantum; reduction; quantum dots; efficient reduction

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.