LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kumagawa and Soxhlet Solvent Fractionation of Lignin: The Impact on the Chemical Structure

Photo by jccards from unsplash

We investigated the effects of solvent fractionation on the chemical structures of two commercial technical lignins. We compared the effect of Soxhlet and Kumagawa extraction. The aim of this work… Click to show full abstract

We investigated the effects of solvent fractionation on the chemical structures of two commercial technical lignins. We compared the effect of Soxhlet and Kumagawa extraction. The aim of this work was to compare the impact of the methods and of the solvents on lignin characteristics. Our investigation confirmed the potentialities of fractionation techniques in refining lignin properties and narrowing the molecular weight distribution. Furthermore, our study revealed that the Kumagawa process enhances the capacity of oxygenated solvents (ethanol and tetrahydrofuran) to extract lignin that contains oxidized groups and is characterized by higher average molecular weights. Furthermore, the use of tetrahydrofuran after ethanol treatment enabled the isolation of lignin with a higher ratio between carbonyl and other oxidized groups. This result was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C NMR and two-dimensional (2D) NMR spectroscopies, gel permeation chromatography (GPC), and analytical pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) analysis. Ultraviolet–visible (UV–vis) spectra evidenced the enrichment in the most conjugated species observed in the extracted fractions. Elemental analyses pointed at the cleavage of C-heteroatom bonds enhanced by the Kumagawa extraction.

Keywords: solvent fractionation; lignin; fractionation lignin; fractionation; kumagawa soxhlet; soxhlet solvent

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.