LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sustainable Approach for Peroxygenase-Catalyzed Oxidation Reactions Using Hydrogen Peroxide Generated from Spent Coffee Grounds and Tea Leaf Residues

Photo from wikipedia

Peroxygenases are promising catalysts for use in the oxidation of chemicals as they catalyze the direct oxidation of a variety of compounds under ambient conditions using hydrogen peroxide (H2O2) as… Click to show full abstract

Peroxygenases are promising catalysts for use in the oxidation of chemicals as they catalyze the direct oxidation of a variety of compounds under ambient conditions using hydrogen peroxide (H2O2) as an oxidant. Although the use of peroxygenases provides a simple method for oxidation of chemicals, the anthraquinone process currently used to produce H2O2 requires significant energy input and generates considerable waste, which negatively affects process sustainability and production costs. Thus, generating H2O2 for peroxygenases on site using an environmentally benign method would be advantageous. Here, we utilized spent coffee grounds (SCGs) and tea leaf residues (TLRs) for the production of H2O2. These waste biomass products reacted with molecular oxygen and effectively generated H2O2 in sodium phosphate buffer. The resulting H2O2 was utilized by the bacterial P450 peroxygenase, CYP152A1. Both SCG-derived and TLR-derived H2O2 promoted the CYP152A1-catalyzed oxidation of 4-methoxy-1-naphthol to Russig’s blue as a model reaction. In addition, when CYP152A1 was incubated with styrene, the SCG and TLR solutions enabled the synthesis of styrene oxide and phenylacetaldehyde. This new approach using waste biomass provides a simple, cost-effective, and sustainable oxidation method that should be readily applicable to other peroxygenases for the synthesis of a variety of valuable chemicals.

Keywords: hydrogen peroxide; using hydrogen; oxidation; spent coffee; h2o2; coffee grounds

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.