LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing Adaptation of Hydration and Protein Dynamics to Temperature

Photo from wikipedia

Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended… Click to show full abstract

Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.

Keywords: hydration; water; probing adaptation; tightly bound; protein dynamics; protein

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.