LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flame Edge Detection Method Based on a Convolutional Neural Network

Photo by joshuanewton from unsplash

In this study, an improved flame edge detector based on convolutional neural network (CNN) was proposed. The proposed method can generate edge graphs and extract edge graphs relatively effectively. Our… Click to show full abstract

In this study, an improved flame edge detector based on convolutional neural network (CNN) was proposed. The proposed method can generate edge graphs and extract edge graphs relatively effectively. Our network architecture was based on VGG16 primarily, the last two max-pooling operators and all full connection layers of the VGG16 network were deleted, and the rest was taken as the basic network. The images output by the five convolution layers were upsampled to the size of the input images and finally fused to the edge image. Error calculation and back propagation of the fusion image and label image are carried out to form a weakly supervised model. Using the open datasets BSDS500 to train the network, the ODS F-measure can reach 0.810. Various experiments were carried out on different flame and fire images, including butane–air flame, oxygen–ethanol flame, energetic material flame, and oxygen–acetylene premixed jet flame, and the infrared thermogram was also verified by our method. The results demonstrate the effectiveness and robustness of the proposed algorithm.

Keywords: network; flame; convolutional neural; flame edge; based convolutional

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.