With the advent of modern lifestyles, diabetes-related comorbidities attributed the importance of low-caloric natural sweetener plants such as Stevia rebaudiana. This plant is the viable source of steviol glycosides (SGs)… Click to show full abstract
With the advent of modern lifestyles, diabetes-related comorbidities attributed the importance of low-caloric natural sweetener plants such as Stevia rebaudiana. This plant is the viable source of steviol glycosides (SGs) and other economically important secondary metabolites. Glandular trichomes (GTs) play the role as a reservoir for all secondary products present in the plant species. Therefore, the present study was carried out to evaluate the influence of different plant growth regulators (PGRs) on GT density and its impact on the SG content. The direct shoot regeneration system was developed on Murashige and Skoog (MS) + benzyl aminopurine (BAP) (1.0 mg/L) + naphthaleneacetic acid (NAA) (0.5 mg/L), and MS + BAP (1.5 mg/L) + NAA (0.5 mg/L) from nodal and leaf explants, respectively. Among the combination of PGRs used, MS medium fortified with BAP (1.0 mg/L) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5 mg/L) played a significant role in increasing the GT density on leaf and stem tissues of S. rebaudiana. Furthermore, high-performance thin-layer chromatography and gas chromatography–mass spectrophotometry data confirmed a notable rise in SGs and other valuable secondary metabolites. Thus, the protocol developed can be used for the propagation of stevia with an improved metabolic profile at a large scale.
               
Click one of the above tabs to view related content.