LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of the Anode Structure on the Performance of Oily Sludge Sediment Microbial Fuel Cells

The anode is considered to be a key factor to improve the single-chamber bioelectrochemical system’s efficiency to degrade oily sludge in sediment while generating electricity. There are few studies on… Click to show full abstract

The anode is considered to be a key factor to improve the single-chamber bioelectrochemical system’s efficiency to degrade oily sludge in sediment while generating electricity. There are few studies on the effect of the anode structure on the performance of oily sludge MFCs systematically. In this paper, an oily sludge bioelectrical system was constructed using carbon felt and carbon plate as anode materials, adjusting the anode material arrangement as transverse and longitudinal, and using different anode materials from single to sextuple anodes. The results of this study showed that the rate of degradation of oily sludge was greater with carbon felt (17.04%) than with the carbon plate (13.11%), with transverse (23.61%) than with the longitudinal (19.82%) arrangement of anodes, and with sextuple anodes (33.72%) than with a single anode (25.26%) in the sediment microbial fuel cells (SMFCs). A similar trend was observed when the voltage, power density, and electromotive force (EMF) of SMFCs were estimated between the carbon felt and carbon plate, transverse and longitudinal arrangements, single and sextuple anodes. It is concluded that the proper adjustment of anode arrangements, using carbon felt as an anode material, and increasing the number of anodes to six may accelerate the rate of degradation of oily sludge in oily sludge sediment microbial fuel cells (SMFCs). Furthermore, the electricity generation performance was also improved.

Keywords: carbon; oily sludge; microbial fuel; sediment microbial; sludge sediment; anode

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.