LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology-Tuned Electrochemical Immunosensing of a Breast Cancer Biomarker Using Hierarchical Palladium Nanostructured Interfaces

Photo from wikipedia

Metallic nanostructures are considered attractive candidates for designing novel biosensors due to their enormously significant surface area, accelerated kinetics, and improved affinity. Controllable morphological tuning of metallic nanostructures on sensing… Click to show full abstract

Metallic nanostructures are considered attractive candidates for designing novel biosensors due to their enormously significant surface area, accelerated kinetics, and improved affinity. Controllable morphological tuning of metallic nanostructures on sensing interfaces is crucial for attaining clinically relevant sensitivity and exquisite selectivity in a complex biological environment. Therefore, a facile, convenient, and robust one-step electroreduction method was employed to develop different morphological variants of palladium (Pd) nanostructures supported onto oxidized carbon nanotubes to facilitate label-free electrochemical immunosensing of HER2. The morphological and structural attributes of the synthesized Pd nanostructures were thoroughly investigated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy techniques. In-depth electrochemical investigations revealed an intimate correlation between the nanostructured sensor and electrochemical response, suggesting the suitability of hierarchical palladium nanostructures supported onto carbon nanotubes [Pd(−0.1 V)/CNT] for sensitive detection of HER2. The high surface area of hierarchical Pd nanostructures enabled an ultrasensitive electrochemical response toward HER2 (detection limit: 1 ng/mL) with a wide detection range of 10 to 100 ng/mL. The ease of surface modification, sensitivity, and reliable electrochemical response in human plasma samples suggested the enormous potential of Pd nanostructuring for chip-level point-of-care screening of HER2-positive breast cancer patients.

Keywords: microscopy; breast cancer; hierarchical palladium; palladium; electrochemical immunosensing

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.