LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lysosome-Targeting Fluorescence Sensor for Sequential Detection and Imaging of Cu2+ and Homocysteine in Living Cells

Photo from wikipedia

A conjugated polymer-based fluorescence sensor, namely, PTNPy, was constructed on the basis of a polythiophene scaffold coupled with dimethylpyridylamine (DPA) groups in side chains for the consecutive detection and quantification… Click to show full abstract

A conjugated polymer-based fluorescence sensor, namely, PTNPy, was constructed on the basis of a polythiophene scaffold coupled with dimethylpyridylamine (DPA) groups in side chains for the consecutive detection and quantification of Cu2+ and Hcy in a perfect aqueous medium. A dramatic fluorescence quenching of PTNPy by the addition of Cu2+ was observed in Tris–HCl buffer solution (2 mM, pH 7.4), demonstrating a quick (<1 min) and highly selective response to Cu2+ with a low limit of detection of 6.79 nM. Subsequently, the Cu2+-quenched fluorescence of PTNPy can be completely recovered by homocysteine (Hcy), showing excellent selectivity to Hcy over other competitive species such as cysteine and glutathione. Thanks to the low cytotoxicity and lysosomal targeting ability of PTNPy, it was further applied as an optical sensor for the sequential imaging of Cu2+ and Hcy in HeLa cells. More importantly, Hcy concentration was linearly related to the fluorescence intensity of PTNPy in living cells, demonstrating huge potential for real-time monitoring the fluctuation of Hcy levels in living cells.

Keywords: fluorescence sensor; sensor sequential; living cells; detection; fluorescence

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.