Photovoltaic (PV) technologies have received tremendous attention for producing clean and renewable energy from the Sun. Third-generation quantum-dot-sensitized solar cells (QDSCs) present promising alternatives to conventional silicon solar cells due… Click to show full abstract
Photovoltaic (PV) technologies have received tremendous attention for producing clean and renewable energy from the Sun. Third-generation quantum-dot-sensitized solar cells (QDSCs) present promising alternatives to conventional silicon solar cells due to their unique properties such as simplicity in fabrication, lower processing temperature, high flexibility, semitransparent nature, and a theoretical conversion efficiency of up to 44%. However, the light-harvesting QD materials used in these SCs allow for the absorption of a small portion (from 300 to 800 nm) of the solar spectrum due to their narrow band gap. The nonabsorption of UV and near-infrared (NIR) light limits the power conversion efficiency (PCE) of these SCs. Hence, a PV technique that efficiently uses the entire solar spectrum becomes essential. The incorporation of light conversion phosphor materials (LCs) in QDSCs is a promising technology to absorb the whole part of the solar spectrum and enhance the PCE of these SCs. This review presents an overview of the advantages and limitations of QDSCs, different types of lanthanide-based light conversion phosphor materials, their synthesis and light conversion mechanism, and their influence on QDSCs.
               
Click one of the above tabs to view related content.