LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Valence State Tuning of Gold Nanoparticles in the Dewetting Process: An X-ray Photoelectron Spectroscopy Study

Photo from wikipedia

Gold nanoparticles (AuNPs) are commonly synthesized using the citrate reduction method, reducing Au3+ into Au1+ ions and facilitating the disproportionation of aurous species to Au atoms (Au0). This method results… Click to show full abstract

Gold nanoparticles (AuNPs) are commonly synthesized using the citrate reduction method, reducing Au3+ into Au1+ ions and facilitating the disproportionation of aurous species to Au atoms (Au0). This method results on citrate-capped AuNPs with valence single states Au0. Here, we report a methodology that allows obtaining AuNPs by the dewetting process with three different valence states (Au3+, Au1+, and Au0), which can be fine-tuned with ion bombardment. The chemical surface changes and binding state of the NPs were investigated using core-level X-ray photoelectron spectroscopy (XPS). This is achieved by recording high-resolution Au 4f XPS spectra as a function of ion dose exposure. The results obtained show a time-dependent tuning effect on the Au valence states using low-energy 200 V acceleration voltage Ar+ ion bombardment, and the valence state conversion kinetics involves the reduction from Au3+ and Au1+ to Au0. Proper control of the reduction in the valence states is critical in surface engineering for controlling catalytic reactions.

Keywords: state; gold nanoparticles; spectroscopy; ray photoelectron; dewetting process; valence

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.