LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Reduction and Oxidation of Chlorinated Aromatic Compounds Enhanced by the Fe-ZSM-5 Catalyst: Kinetics and Mechanisms

Photo by martijnbaudoin from unsplash

Devising cost-effective electrochemical catalyst system for the efficient degradation of chlorinated aromatic compounds is urgently needed for environmental pollution control. Herein, a Fe-ZSM-5 zeolite was used as a suspended catalyst… Click to show full abstract

Devising cost-effective electrochemical catalyst system for the efficient degradation of chlorinated aromatic compounds is urgently needed for environmental pollution control. Herein, a Fe-ZSM-5 zeolite was used as a suspended catalyst to facilitate the degradation of lindane as a model chlorinated pesticide in an electrochemical system consisting of the commercial DSA (Ti/RuO2-IrO2) anode and graphite cathode. It was found that the Fe-ZSM-5 zeolite greatly accelerated the degradation of lindane, with the degradation rate constant more than 8 times higher than that without Fe-ZSM-5. In addition, the Fe-ZSM-5 zeolite widened the working pH range from 3 to 11, while efficient degradation of lindane in the absence of Fe-ZSM-5 was only obtained at pH ≤ 5. The degradation of lindane was primarily due to reductive dechlorination mediated by atomic H* followed by •OH oxidation. Fe-ZSM-5 zeolite could enrich lindane, H*, and •OH on its surface, thus provided a suitable local environment for lindane degradation. The Fe-ZSM-5 zeolite exhibited high stability and reusability, and reduced the energy consumption. This research provides a potential reduction–oxidation strategy for removing organochlorine compounds through a cost-efficient Fe-ZSM-5 catalytic electrochemical system.

Keywords: catalyst; zsm zeolite; lindane; zsm; degradation

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.