Oxygen-containing alternative fuels have excellent potential to improve diesel fuel economy and reduce particulate matter (PM) emissions. In this study, a novel mixed dialkyl oxalate (mDAO) as an additive was… Click to show full abstract
Oxygen-containing alternative fuels have excellent potential to improve diesel fuel economy and reduce particulate matter (PM) emissions. In this study, a novel mixed dialkyl oxalate (mDAO) as an additive was applied to substitute conventional diesel to investigate the effects of mDAO on the combustion and emission characteristics of a high-pressure common-rail diesel engine. The research conducted suggested that the peak pressure rise rate in the main injection stage and the peak in-cylinder pressure presented the rising tendency with the increased mass fraction of mDAO at most test conditions. With the addition of mDAO, the in-cylinder temperature (T) and brake thermal efficiency (BTE) were higher than that of pure diesel. When the mass fraction of mDAO in the mDAO/diesel blend was 30%, the improvement of BTE was most obvious. The ignition delay was prolonged as the mass fraction of mDAO was increased due to the lower cetane number of the mDAO. In addition, adding mDAO into diesel had an effective impact on the reduction of PM emissions, while the nitrogen oxide (NOx) emissions deteriorated. These results indicate that mDAO is a great potential diesel alternative fuel.
               
Click one of the above tabs to view related content.