Quick and accurate molecular diagnostics in protein detection can greatly benefit medicine in disease diagnosis and lead to positive patient outcomes. However, specialized equipment used in clinical laboratories often comes… Click to show full abstract
Quick and accurate molecular diagnostics in protein detection can greatly benefit medicine in disease diagnosis and lead to positive patient outcomes. However, specialized equipment used in clinical laboratories often comes with trade-offs between operation and function serving a single role for very specific needs. For example, to achieve high analytical sensitivity and specificity, instruments such as high-performance liquid chromatography and/or liquid chromatography–mass spectrometry use a complex instrument design and require thorough training of the users. On the other hand, simple tests such as protein detection in urinary tract infection using dip-stick assays provide very quick results but suffer from poor analytical sensitivity. Here, we present an application study for the 3D particle counter technology, which is based on optical confocal detection in order to scan large sample volumes (0.5–3 mL) in glass cuvettes, that aims to close the gap between analytical sensitivity and turnover assay time and simplify protein detection by adopting bead-based immunoassays. Combining the 3D particle counter technology with bead-based immunoassays, a subpicomolar limit of detection—ranging from 119 to 346 fM—was achieved within 3.5-hour assay time for recombinant mouse interleukin 6 detection. As an alternative instrument to a flow cytometer, the 3D particle counter takes advantages of bead-based immunoassays and provides unique accessibility and flexibility for users.
               
Click one of the above tabs to view related content.