LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Fiber Type on the Mechanical Properties of the Open-Graded Friction Course Mixture

Photo from wikipedia

The open-graded friction courses (OGFCs) have a large number of interconnected voids, which may cause serious water damage to the pavement. Hence, the road performance needs to be investigated. In… Click to show full abstract

The open-graded friction courses (OGFCs) have a large number of interconnected voids, which may cause serious water damage to the pavement. Hence, the road performance needs to be investigated. In this study, the mechanical properties of OGFCs containing two different fibers (lignin and mineral fiber) were investigated. Based on the procedure proposed by the Chinese specification JTG F40-2004, OGFCs were designed with the asphalt content between 4.1 and 4.7 wt % to find the optimal asphalt content (OAC). The mesh-basket draindown test was used to check the fiber’s stabilization and absorption of bitumen. OGFCs containing the lignin/mineral fiber with OAC would be preferred in terms of the bulk specific gravity. These results indicate that the fiber can bring higher air voids to the OGFCs, and the different specific gravities of fibers may primarily account for the result. Both the lignin and mineral fibers can bring much more asphalts padded in the pores of mineral aggregates and subsequently larger OAC in OGFCs due to their higher asphalt absorption. Performance experiments were carried out to check the dynamic stability and moisture susceptibility of OGFCs containing the lignin/mineral fiber. The study suggests that the lignin and mineral fiber can be used to adjust the internal environment of OGFCs, enhancing the moisture damage resistance and improving the rutting resistance of OGFCs at high temperatures.

Keywords: graded friction; open graded; fiber; lignin mineral; mechanical properties; mineral fiber

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.