LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First-Principles Investigation of Adsorption Behaviors and Electronic, Optical, and Gas-Sensing Properties of Pure and Pd-Decorated GeS2 Monolayers

Photo from wikipedia

The extensive applications of two-dimensional (2D) transition metal disulfides in gas sensing prompt us to explore the adsorption, electronic, optical, and gas-sensing properties of the pure and Pd-decorated GeS2 monolayers… Click to show full abstract

The extensive applications of two-dimensional (2D) transition metal disulfides in gas sensing prompt us to explore the adsorption, electronic, optical, and gas-sensing properties of the pure and Pd-decorated GeS2 monolayers interacting with NO2, NO, CO2, CO, SO2, NH3, H2S, HCN, HF, CH4, N2, and H2 gases by using first-principles methods. Our results showed that the pure GeS2 monolayer is not appropriate to develop gas sensors. The stability of the Pd-decorated GeS2 (Pd-GeS2) monolayer was determined by binding energy, transition state theory, and molecular dynamics simulations, and the Pd decoration has a significant effect on adsorption strength and the change in electronic properties (especially electrical conductivity). The Pd-GeS2 monolayer-based sensor has relatively high sensitivity toward NO and NO2 gases with moderate recovery time. In addition, the adsorption of NO and NO2 can conspicuously change the optical properties of the Pd-GeS2 monolayer. Therefore, the Pd-GeS2 monolayer is predicted to be reusable and a highly sensitive (optical) gas sensing material for the detection of NO and NO2.

Keywords: gas sensing; adsorption; gas; optical gas; decorated ges2

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.