LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geochemical and Petrological Characterization of the Early Eocene Carbonaceous Shales: Implications for Oil and Gas Exploration in the Barmer Basin, Northwest India

Photo by richardrschunemann from unsplash

Carbonaceous shales of the Early Eocene Dharvi/Dunger Formation in the onshore Barmer Basin, northwest India were studied for the first time by integrating geochemical and organic petrological analyses. The carbonaceous… Click to show full abstract

Carbonaceous shales of the Early Eocene Dharvi/Dunger Formation in the onshore Barmer Basin, northwest India were studied for the first time by integrating geochemical and organic petrological analyses. The carbonaceous shales of the Early Eocene Dharvi/Dunger Formation are characterized by a higher organic carbon content (TOC) of >10 wt % and consist mainly of a mixture of organic matter of types II and III kerogen, with exhibited hydrogen index values ranging between 202 and 292 mg HC/g TOC. The dominance of such kerogen is confirmed by the high amounts of huminite and fluorescent liptinite macerals. Consequently, the carbonaceous shales of the Early Eocene Dharvi/Dunger Formation are promising source rocks for both oil and gas generation potential, with oils of high wax contents, according to pyrolysis–gas chromatography results. The chemical and optical maturity results such as low values huminite/vitrinite reflectance, production index, and Tmax show that most of the examined carbonaceous shale rocks from the outcrop section of the Kapurdi mine have entered the low maturity stage of oil generation, exhibiting a range of immature to the very early-mature. Therefore, as highlighted in this study, the substantial abundance in hydrocarbon generation potential from these carbonaceous shales in the Dharvi/Dunger Formation may represent future conventional petroleum exploration in the southern part of the Barmer Basin, where the Dharvi/Dunger Formation has reached deeper burial depths.

Keywords: dunger formation; early eocene; dharvi dunger; carbonaceous shales; barmer basin

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.