LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactive Extraction for Fatty Acid Methyl Ester Production from Castor Seeds Using a Heterogeneous Base Catalyst: Process Parameter Optimization and Characterization

Photo by primal_harmony from unsplash

Fatty acid methyl ester (FAME) from oil seeds is conventionally produced via a two/three-process-step method: extraction of oil and subsequent esterification/transesterification to fatty FAME (biodiesel). However, in the present study,… Click to show full abstract

Fatty acid methyl ester (FAME) from oil seeds is conventionally produced via a two/three-process-step method: extraction of oil and subsequent esterification/transesterification to fatty FAME (biodiesel). However, in the present study, we investigated the production of castor kernel oil (CKO) FAME by reactive extraction for extraction and transesterification in a single process using a heterogeneous catalyst. The content of oil that can be extracted was checked by investigating several nonreactive extraction parameters such as solvent type (polar, nonpolar, and mixture), the solvent to kernel ratio, and extraction time. Maximum oil was extracted using methanol as a solvent with a methanol-to-seed ratio of 6.25:1 for 6 h extraction time. The viscosity of CKO obtained by nonreactive extraction was reduced from 288.83 to 19.04 mm2/s by reactive extraction using a 4.09 wt % catalyst concentration (BaO) and a 330.9:1 methanol-to-oil molar ratio for 6 h reaction time at 64 °C. Reactive extraction for transesterification of CKO was performed using BaO, CaO, and ZnO heterogeneous catalysts. BaO results in the increased yield of CKO FAME compared to other catalysts. Central composite design (CCD) using the response surface methodology (RSM) was implemented to design the experimental matrix, process parameter optimization, maximize the yield of CKO FAME, and investigate interaction effects of parameters such as reactive extraction temperature (55–65 °C), catalyst concentration (3–5 wt %), and methanol-to-oil molar ratio (175:1–350:1) on the yield of CKO FAME. A second-order model equation with a p-value < 0.05 and an R2 value near 1.0 was obtained to predict the yield using the input parameters. The maximum yield CKO FAME of 96.13 wt % with 94.4% purity of produced CKO FAME was obtained at a catalyst concentration of 4.09 wt % and a methanol-to-oil molar ratio of 330.9:1 for 6 h with a reaction temperature of 64 °C. Therefore, a comparable conversion of castor seed oil triglyceride (96.13 wt %) was obtained in a single step directly from castor seeds. Furthermore, the rheological behavior investigation of castor kernel oil and castor methyl ester revealed that the dynamic viscosity of both samples was found to be dependent on triglyceride content and temperature.

Keywords: cko fame; castor; oil; extraction; reactive extraction

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.