LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Box–Behnken Design for Hydrogen Evolution from Sugar Industry Wastewater Using Solar-Driven Hybrid Catalysts

Photo from wikipedia

Hydrogen is a clean and green fuel and can be produced from renewable sources via photocatalysis. Solar-driven hybrid catalysts were synthesized and characterized (scanning electron microscopy (SEM), transmission electron microscopy… Click to show full abstract

Hydrogen is a clean and green fuel and can be produced from renewable sources via photocatalysis. Solar-driven hybrid catalysts were synthesized and characterized (scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and UV–vis diffuse reflectance spectroscopy (DSR)), and the results implied that graphene-supported LaRuO3 is a more promising photocatalyst to produce hydrogen and was used to produce hydrogen from sugar industry wastewater. To investigate the main and interaction effects of reaction parameters (pH, catalyst amount, and [H2O2]0) on the evolved hydrogen amount, the Box–Behnken experimental design model was used. The highest hydrogen evolution obtained was 6773 μmol/gcat from sugar industry wastewater at pH 3, 0.15 g/L GLRO, and 15 mM H2O2. Based on the Pareto chart for the evolved hydrogen amount using GLRO, among the main effects, the only effective parameter was the catalyst amount for the photocatalytic hydrogen evolution from sugar industry wastewater. In addition, the squares of pH and two-way interaction of pH and [H2O2]0 were also statistically efficient over the evolved hydrogen amount.

Keywords: industry wastewater; spectroscopy; microscopy; hydrogen; sugar industry

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.