LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic Study of Diketopiperazine Formation during Solid-Phase Peptide Synthesis of Tirzepatide

Photo by richardrschunemann from unsplash

This study focused on investigating diketopiperazine (DKP) and the formation of associated double-amino-acid deletion impurities during linear solid-phase peptide synthesis (SPPS) of tirzepatide (TZP). We identified that the DKP formation… Click to show full abstract

This study focused on investigating diketopiperazine (DKP) and the formation of associated double-amino-acid deletion impurities during linear solid-phase peptide synthesis (SPPS) of tirzepatide (TZP). We identified that the DKP formation primarily occurred during the Fmoc-deprotection reaction and post-coupling aging of the unstable Fmoc-Pro-Pro-Ser-resin active pharmaceutical ingredient (API) intermediate. Similar phenomena have also been observed for other TZP active pharmaceutical ingredient (API) intermediates that contain a penultimate proline amino acid, such as Fmoc-Ala-Pro-Pro-Pro-Ser-resin, Fmoc-Pro-Pro-Pro-Ser-resin, and Fmoc-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-resin, which are intermediates for both hybrid and linear synthesis approaches. During post-coupling aging, it is found that Fmoc deprotection can proceed in dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and acetonitrile (ACN) solvents without any piperidine addition. Density functional theory (DFT) calculations showed that a peptide that has a penultimate proline stabilizes the transition state through the C–H···π interaction during Fmoc decomposition, which causes those peptides to be more prone to cascade-deprotection reactions. Pseudo-reaction pathways are then proposed, and a corresponding macrokinetics model is developed to allow accurate prediction of the TZP peptide intermediate self-deprotection and DKP formation rate. Based on those studies, control strategies for minimizing DKP formation were further investigated and an alternative to Fmoc protection was identified (Bsmoc-protected amino acids), which eliminated the formation of the DKP byproducts. In addition, the use of oxyma additives and lower storage temperature was demonstrated to markedly improve the peptide intermediate stability to DKP degradation pathways.

Keywords: dkp formation; pro ser; synthesis; solid phase; formation; pro pro

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.