Antibiotics and antibiotic resistance genes (ARGs) are emerging environmental contaminants. TiO2 photocatalytic degradation has been proved an important removal technique, but its photocatalytic ability needs be improved. In our work,… Click to show full abstract
Antibiotics and antibiotic resistance genes (ARGs) are emerging environmental contaminants. TiO2 photocatalytic degradation has been proved an important removal technique, but its photocatalytic ability needs be improved. In our work, natural N-doped carbon quantum dots (N-SCQDs) were extracted from hydrothermal carbonization waste liquid of straw and were attached onto TiO2 nanospheres for remediating antibiotics [sulfadiazine (SA)] and ARGs (sul1, sul2, and intl1). The maximum SA reduction rates were close to 100%, and the ARG reduction rates were 52.91–83.52%/lg10 (sul1), 32.10–68.23%/lg10 (sul2), and 46.29–76.55%/lg10 (inlt1). The temperature of the straw derivatives would influence their photoelectric properties. N-SCQDs@TiO2 expands the application range of a novel potential high-efficiency degradation catalyst and offers a new way of hydrothermal carbonization waste liquid of agricultural waste.
               
Click one of the above tabs to view related content.