LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting

Photo from wikipedia

The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their… Click to show full abstract

The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence.

Keywords: zero field; field splitting; ion magnets; single ion

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.