LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination of the Acute and Chronic Toxicity of Sulfate from the Sulfur Autotrophic Denitrification Process to Juvenile Zebrafish (Danio rerio)

Photo from wikipedia

Sulfur-based materials are widely used as electron donors for denitrification to enhance nitrogen removal from water. This leads to an increased sulfate concentration in the effluent or sulfate accumulation in… Click to show full abstract

Sulfur-based materials are widely used as electron donors for denitrification to enhance nitrogen removal from water. This leads to an increased sulfate concentration in the effluent or sulfate accumulation in recirculating aquaculture systems. This study explored acute and chronic toxicity of sulfate to juvenile zebrafish (Danio rerio) and investigated the histopathological changes in the gills of juvenile zebrafish exposed to sulfate. Results show that zebrafish had a high tolerance to sulfate, with no acute toxicity at sulfate concentrations from 250 to 3200 mg/L. For the chronic toxicity study, it was found that zebrafish mortality decreased with the increase in sulfate concentrations ranging from 250 to 1500 mg/L. In contrast, when the sulfate concentration was 1500–3000 mg/L, zebrafish mortality increased with the increasing sulfate concentration. In addition, in the ion balance test, KCl was added to balance the effects of Na+ from the Na2SO4 used to obtain the desired sulfate concentrations, showing that fish mortality correspondingly increased with increasing KCl addition. Furthermore, when living in an environment with elevated sulfate concentrations for a long period, changes were observed in the morphology, behavior, and gill tissue of the zebrafish, including slow and lateral swimming; bottom settling; and large opening and closing, lamellar fusion, and necrosis of gills. This research reveals the toxicity of sulfate to aquatic organisms, providing a scientific basis for the promotion and application of sulfur or sulfur-based materials in autotrophic reduction processes for wastewater treatment.

Keywords: chronic toxicity; toxicity sulfate; toxicity; sulfur; sulfate; juvenile zebrafish

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.