LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative Prediction of Charge Mobilities and Theoretical Insight into the Regulation of Site-Specific Trifluoromethylethynyl Substitution to Electronic and Charge Transport Properties of 9,10-Anthraquinone

Photo by bundo from unsplash

Herein, we systematically studied the electronic and conducting properties of 9,10-anthraquinone (AQ) and its derivatives and discussed the substitute-site effects on their organic field-effect transistor (OFET) properties in detail. Our… Click to show full abstract

Herein, we systematically studied the electronic and conducting properties of 9,10-anthraquinone (AQ) and its derivatives and discussed the substitute-site effects on their organic field-effect transistor (OFET) properties in detail. Our calculation results show the influence of different substitute sites on the ionization potential (IP), electronic affinity (EA), reorganization energy (λ), electronic couplings (V), and anisotropic mobility (μ) of semiconducting materials, which mainly originates from the variations of the frontier molecular orbital charge distributions, the steric hindrance, and the conjugate degree. Combining quantum-chemical calculations with charge transfer theory, we simulated the intermolecular hopping rate in the organic crystals of AQ derivatives and predicted the fluctuation range of three-dimensional (3D) anisotropic charge carrier mobility for the first time. Our calculation results well reproduced the experimental observations and provided evidence for the determination of the optimal OFET conduction plane and channel direction relative to the crystal axis.

Keywords: charge mobilities; quantitative prediction; charge; prediction charge; properties anthraquinone; site

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.