LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors

Photo from wikipedia

Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes… Click to show full abstract

Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes (CuO@CNTFs) has been developed as a flexible and wearable glucose sensor with remarkable catalytic activity. The unidimensional structure of CNT fibers displayed efficient conductivity with enhanced mechanical strength, which makes these fibers far superior as compared to other fibrous-like materials. Copper oxide (CuO) nanoparticles were deposited over the surface of CNT fibers by a binder-free facile electrodeposition approach followed by thermal treatment that enhanced the performance of non-enzymatic glucose sensors. Scanning electron microscopy and energy-dispersive X-ray analysis confirmed the successful deposition of CuO nanoparticles over the fiber surface. Amperometric and voltammetric studies of fiber-based microelectrodes (CuO@CNTFs) toward glucose sensing showed an excellent sensitivity of ∼3000 μA/mM cm2, a low detection limit of 1.4 μM, and a wide linear range of up to 13 mM. The superior performance of the microelectrode is attributed to the synergistic effect of the electrocatalytic activity of CuO nanoparticles and the excellent conductivity of CNT fibers. A lower charge transfer resistance value obtained via electrochemical impedance spectroscopy (EIS) also demonstrated the superior electrode performance. This work demonstrates a facile approach for developing CNT fiber-based microelectrodes as a promising solution for flexible and disposable non-enzymatic glucose sensors.

Keywords: glucose sensors; fiber based; cnt fibers; microelectrode

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.