LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Weight Controls Interactions between Plastic Deformation and Fracture in Cold Spray of Glassy Polymers

Photo from wikipedia

Polymer cold spray has gained considerable attention as a novel manufacturing process. A promising aspect of this technology involves the ability to deposit uniform polymer coatings without the requirements of… Click to show full abstract

Polymer cold spray has gained considerable attention as a novel manufacturing process. A promising aspect of this technology involves the ability to deposit uniform polymer coatings without the requirements of solvent and/or high-temperature conditions. The present study investigates the interplay between shear instability, often considered to be the primary mechanism for bond formation, and fracture, as a secondary energy dissipation mechanism, collectively governing the deposition of glassy thermoplastics on similar and dissimilar substrates. A hybrid experimental-computational approach is utilized to explore the simultaneous effects of several interconnected phenomena, namely the particle–substrate relative deformability, molecular weights, and the resultant yielding versus fracture of polystyrene particles, examined herein as a model material system. The computational investigations are based on constitutive plasticity and damage equations determined and calibrated based on a statistical data mining approach applied to a wide collection of previously reported stress–strain and failure data. Results obtained herein demonstrate that the underlying adhesion mechanisms depend strongly on the molecular weight of the sprayed particles. It is also shown that although the plastic deformation and shear instability are still the primary bond formation mechanisms, the molecular-weight-dependent fracture of the sprayed glassy polymers is also a considerable phenomenon capable of significantly affecting the deposition process, especially in cases involving the cold spray of soft thermoplastics on hard substrates. The strong interplay between molecular-weight-dependent plastic yielding and fracture in the examined system emphasizes the importance of molecular weight as a critical variable in the cold spray of glassy polymers, also highlighting the possibility of process optimization by proper feedstock selection.

Keywords: glassy; fracture; cold spray; molecular weight

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.