Complex 2,3,12,13-tetracyano-5,10,15,20-tetraphenylporphyrinatooxidovanadium(IV) {[VIVOTPP(CN)4], 2} has been prepared by nucleophilic substitution of β-bromo groups of the corresponding 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyrinatooxidovanadium(IV) {[VIVOTPP(Br)4], 1} using CuCN in quinoline. Both complexes show biomimetic catalytic activity similar… Click to show full abstract
Complex 2,3,12,13-tetracyano-5,10,15,20-tetraphenylporphyrinatooxidovanadium(IV) {[VIVOTPP(CN)4], 2} has been prepared by nucleophilic substitution of β-bromo groups of the corresponding 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyrinatooxidovanadium(IV) {[VIVOTPP(Br)4], 1} using CuCN in quinoline. Both complexes show biomimetic catalytic activity similar to enzyme haloperoxidases and efficiently brominate various phenol derivatives in the presence of KBr, H2O2, and HClO4 in the aqueous medium. Between these two complexes, 2 exhibits excellent catalytic activity with high turnover frequency (35.5–43.3 s–1) due to the strong electron-withdrawing nature of the cyano groups attached at β-positions and its moderate nonplanar structure as compared to 1 (TOF = 22.1–27.4 s–1). Notably, this is the highest turnover frequency value observed for any porphyrin system. The selective epoxidation of various terminal alkenes using complex 2 has also been carried out, and the results are good, specifying the importance of electron-withdrawing cyano groups. Catalysts 1 and 2 are recyclable, and the catalytic activity proceeds through the corresponding [VVO(OH)TPP(Br)4] and [VVO(OH)TPP(CN)4] intermediates, respectively.
               
Click one of the above tabs to view related content.