LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Synthesis and Biological Evaluation of Dicoumarols: Preparation, Characterization, and Docking Studies

Photo from wikipedia

A series of 3,3-arylidene bis (4-hydroxycoumarins) 2 were synthesized by the reaction of aromatic aldehydes with 4-hydroxycoumarin using dodecylbenzenesulfonic acid as Brønsted acid-surfactant catalyst in aqueous media and under microwave… Click to show full abstract

A series of 3,3-arylidene bis (4-hydroxycoumarins) 2 were synthesized by the reaction of aromatic aldehydes with 4-hydroxycoumarin using dodecylbenzenesulfonic acid as Brønsted acid-surfactant catalyst in aqueous media and under microwave irradiation. The present method is operationally simple and the use of water as the reaction medium makes the process environmentally benign. The epoxydicoumarins 5 were then obtained with a good yield by heating 3,3′-arylidenebis-4-hydroxycoumarins 2 in acetic anhydride. Techniques such as elemental analysis, 1H, 13C–1H NMR, and infrared spectroscopy were employed to characterize these compounds. The synthesized compounds displayed good antibacterial potential against Escherichia coli (ATCC 25988), Pseudomonas aeruginosa (ATCC 27853), Klebsilla pneumonia (ATCC 700603), Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300) and Candida albicans (ATCC 14053). The MIC values of 23 mg/mL for compound 5e against Escherichia coli (ATCC 25988) and 17 mg/mL for 2a were observed. Furthemore, a molecular docking simulation has been performed to evaluate the antibacterial activities and the probable binding modes of the studied compounds 2a–f and 5a–g toward the active sites of a series of well known antibacterial targets. Among the investigated compounds, the binding modes and docking scores demonstrate that 2a has the most antibacterial and antifungal activities. Additionally, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS has been tested for their ability to scavenge hydrogen peroxide and free radicals. According to our results, these compounds exhibit excellent radical scavenging properties. Furthermore, compounds 2–5 were evaluated for anti-inflammatory activity by indirect haemolytic and lipoxygenase inhibition assays and revealed good activity.

Keywords: synthesis biological; preparation characterization; effective synthesis; biological evaluation; evaluation dicoumarols; dicoumarols preparation

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.