LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphitization by Metal Particles

Photo from wikipedia

Graphitization of carbon offers a promising route to upcycle waste biomass and plastics into functional carbon nanomaterials for a range of applications including energy storage devices. One challenge to the… Click to show full abstract

Graphitization of carbon offers a promising route to upcycle waste biomass and plastics into functional carbon nanomaterials for a range of applications including energy storage devices. One challenge to the more widespread utilization of this technology is controlling the carbon nanostructures formed. In this work, we undertake a meta-analysis of graphitization catalyzed by transition metals, examining the available electron microscopy data of carbon nanostructures and finding a correlation between different nanostructures and metal particle size. By considering a thermodynamic description of the graphitization process on transition-metal nanoparticles, we show an energy barrier exists that distinguishes between different growth mechanisms. Particles smaller than ∼25 nm in radius remain trapped within closed carbon structures, while nanoparticles larger than this become mobile and produce nanotubes and ribbons. These predictions agree closely with experimentally observed trends and should provide a framework to better understand and tailor graphitization of waste materials into functional carbon nanostructures.

Keywords: carbon; metal particles; graphitization metal; graphitization; carbon nanostructures

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.