LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superconducting Flexible Organic/Inorganic Hybrid Compound Adhesives

Photo from wikipedia

Superconducting pastes have been successfully developed from superconducting particles using conventional methods, thereby opening up new avenues for the application of superconducting materials. These pastes are isotropic one-component heat-curable adhesives… Click to show full abstract

Superconducting pastes have been successfully developed from superconducting particles using conventional methods, thereby opening up new avenues for the application of superconducting materials. These pastes are isotropic one-component heat-curable adhesives belonging to the class of organic/inorganic hybrid compounds. In this work, superconducting pastes prepared using Nb or NbN superconducting particles are applied to solid substrates through screen printing and then heat-cured under optimized conditions to form single-phase thick films. The resistivity of the Nb and NbN films becomes zero at 7.2 and 10.5 K, respectively, indicating that both these films are superconductive at cryogenic temperatures. A large free-standing film of length approximately 130 mm is successfully developed using the NbN paste. The free-standing film is flexible and exhibits superconductivity at 11 K. These results demonstrate, for the first time, that superconductivity, flexibility, adhesion, and ink properties can be simultaneously achieved in organic/inorganic hybrid compounds.

Keywords: compound adhesives; flexible organic; inorganic hybrid; superconducting flexible; organic inorganic; hybrid compound

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.