LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploration of SARS-CoV-2 Mpro Noncovalent Natural Inhibitors Using Structure-Based Approaches

Photo from wikipedia

With the emergence of antibody-evasive omicron subvariants (BA.2.12.1, BA.4, and BA.5), which can compromise the efficacy of vaccination, it is of utmost importance to widen the finite therapeutic options for… Click to show full abstract

With the emergence of antibody-evasive omicron subvariants (BA.2.12.1, BA.4, and BA.5), which can compromise the efficacy of vaccination, it is of utmost importance to widen the finite therapeutic options for COVID-19. Although more than 600 co-crystal complexes of Mpro with inhibitors have been revealed, utilizing them to search for novel Mpro inhibitors remains limited. Although there were two major groups of Mpro inhibitors, covalent and noncovalent inhibitors, noncovalent inhibitors were our main focus due to the safety concerns with their covalent counterparts. Hence, this study aimed to explore Mpro noncovalent inhibition ability of phytochemicals extracted from Vietnamese herbals by combining multiple structure-based approaches. By closely inspecting 223 complexes of Mpro with noncovalent inhibitors, a 3D-pharmacophore model representing typical chemical features of Mpro noncovalent inhibitors was generated with good validation scores (sensitivity = 92.11%, specificity = 90.42%, accuracy = 90.65%, and goodness-of-hit score = 0.61). Afterward, the pharmacophore model was applied to explore the potential Mpro inhibitors from our in-house Vietnamese phytochemical database, revealing 18 substances, 5 of which were in vitro assayed. The remaining 13 substances were then examined by induced-fit molecular docking, revealing 12 suitable compounds. A machine-learning activity prediction model was developed to rank the hit, suggesting nigracin and calycosin-7-O-β-glucopyranoside as promising Mpro natural noncovalent inhibitors.

Keywords: mpro noncovalent; mpro inhibitors; based approaches; noncovalent inhibitors; structure based

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.