LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-Component Reaction of 3-Formyl-6-Methylchromone, Primary Amines, and Secondary Phosphine Oxides: A Synthetic and Mechanistic Study

Photo by ryanhoffman007 from unsplash

A fast, mild, and efficient catalyst-free approach has been developed for the synthesis of chromonyl-substituted α-aminophosphine oxides by the three-component reaction of 3-formyl-6-methylchromone, primary amines, and secondary phosphine oxides at… Click to show full abstract

A fast, mild, and efficient catalyst-free approach has been developed for the synthesis of chromonyl-substituted α-aminophosphine oxides by the three-component reaction of 3-formyl-6-methylchromone, primary amines, and secondary phosphine oxides at ambient temperature. Carrying out the reaction with aliphatic amines or aminoalcohols at a higher temperature (80 °C), phosphinoyl-functionalized 3-aminomethylene chromanones were formed instead of the corresponding chromonyl-substituted α-aminophosphine oxides. No reaction occurred when 3-formyl-6-methylchromone and secondary phosphine oxides were reacted with aromatic amines in the absence of any catalyst. Applying a basic catalyst, the formation of the phosphinoyl-functionalized 3-aminomethylene chromanones was observed; however, the reaction was not complete. Detailed experimental and quantum chemical studies were performed to study the transformation. Moreover, the in vitro cytotoxicity of phosphinoyl-functionalized 3-aminomethylene chromanones was also investigated in three different cell lines, such as human lung adenocarcinoma (A549), mouse fibroblast (NIH/3T3), and human promyelocytic leukemia (HL60) cells. Several derivatives showed modest activity against the human promyelocytic leukemia (HL60) cell line.

Keywords: reaction; formyl methylchromone; phosphine oxides; secondary phosphine

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.