LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Hierarchical Layered Quasi-Triangular Ce(OH)CO3 and Its Thermal Conversion to Ceria with High Polishing Performance

Photo from wikipedia

Layered quasi-triangular Ce(OH)CO3 assembled from primary nanoparticles was synthesized via a solvothermal method and converted into CeO2 abrasive particles by calcination at 800–1000 °C. With the increase of calcination temperature,… Click to show full abstract

Layered quasi-triangular Ce(OH)CO3 assembled from primary nanoparticles was synthesized via a solvothermal method and converted into CeO2 abrasive particles by calcination at 800–1000 °C. With the increase of calcination temperature, the primary particle size increased and the microstructure, mechanical hardness, and chemical activity of the CeO2 particles changed, thus affecting the polishing performance. The calcined products obtained at 800, 850, and 900 °C maintained the layered edge structure of the Ce(OH)CO3 precursor and had a relatively high specific surface area and surface Ce3+ concentration. The samples calcined at 950 and 1000 °C lost the layered structure due to the large-scale melting of the primary particles, and their surface chemical activity decreased. The polishing experiments on K9 glass showed that, with the calcination temperature rising from 800 to 1000 °C, the material removal rate (MRR) first increased and then decreased sharply. The initial increase of MRR was attributed to the increase of mechanical hardness of the layered quasi-triangular CeO2, and the subsequent decrease of MRR was related to the decrease in surface chemical activity and disappearance of the layered edge structure. The product calcined at 900 °C had the highest MRR and best surface quality after polishing due to the layered edge structure and optimal match of chemical activity and mechanical hardness.

Keywords: layered quasi; quasi triangular; polishing performance; triangular co3; chemical activity

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.