LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Enhancement of an MoS2-Based Heterojunction Solar Cell with an In2Te3 Back Surface Field: A Numerical Simulation Approach

Photo by rgaleriacom from unsplash

Researchers are currently showing interest in molybdenum disulfide (MoS2)-based solar cells due to their remarkable semiconducting characteristics. The incompatibility of the band structures at the BSF/absorber and absorber/buffer interfaces, as… Click to show full abstract

Researchers are currently showing interest in molybdenum disulfide (MoS2)-based solar cells due to their remarkable semiconducting characteristics. The incompatibility of the band structures at the BSF/absorber and absorber/buffer interfaces, as well as carrier recombination at the rear and front metal contacts, prevents the expected result from being achieved. The main purpose of this work is to enhance the performance of the newly proposed Al/ITO/TiO2/MoS2/In2Te3/Ni solar cell and investigate the impacts of the In2Te3 BSF and TiO2 buffer layer on the performance parameters of open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), and power conversion efficiency (PCE). This research has been performed by utilizing SCAPS simulation software. The performance parameters such as variation of thickness, carrier concentration, the bulk defect concentration of each layer, interface defect, operating temperature, capacitance–voltage (C–V), surface recombination velocity, and front as well as rear electrodes have been analyzed to achieve a better performance. This device performs exceptionally well at lower carrier concentrations (1 × 1016 cm–3) in a thin (800 nm) MoS2 absorber layer. The PCE, VOC, JSC, and FF values of the Al/ITO/TiO2/MoS2/Ni reference cell have been estimated to be 22.30%, 0.793 V, 30.89 mA/cm2, and 80.62% respectively, while the PCE, VOC, JSC, and FF values have been determined to be 33.32%, 1.084 V, 37.22 mA/cm2, and 82.58% for the Al/ITO/TiO2/MoS2/In2Te3/Ni proposed solar cell by introducing In2Te3 between the absorber (MoS2) and the rear electrode (Ni). The proposed research may give an insight and a feasible way to realize a cost-effective MoS2-based thin-film solar cell.

Keywords: mos2 based; solar cell; mos2; simulation; performance

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.