Photocatalysis provides an exciting solution to the current growing energy challenge. However, the activity and stability of photocatalysts are two important issues in photocatalytic applications. In this work, we have… Click to show full abstract
Photocatalysis provides an exciting solution to the current growing energy challenge. However, the activity and stability of photocatalysts are two important issues in photocatalytic applications. In this work, we have successfully developed an efficient and stable photocatalyst by loading ReS2 nanoparticles onto a CdS/ZnS heterojunction. After loading ReS2, there is a strong interaction between the CdS/ZnS heterojunction and ReS2, which accelerates the photogenerated charge migration and effectively inhibits the recombination of photogenerated electrons and holes. Accordingly, CdS/ZnS-ReS2 displays excellent photocatalytic activity and stability with the highest hydrogen production rate of 10 722 μmol g–1 h–1, which is approximately 178 times higher than that of the pure CdS and 5 times better than that of CdS/ZnS. This work not only facilitates solar energy conversion to improve photocatalytic activity and stability but also broadens the application of ReS2 as a cocatalyst.
               
Click one of the above tabs to view related content.