LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA G-Quadruplex-Binding Protein Developed Using the RGG Domain of Translocated in Liposarcoma/Fused in Sarcoma Inhibits Transcription of bcl-2

Photo from wikipedia

The G-quadruplexes (G4s) in the genome are important drug targets because they regulate gene expression and the genome structure. Several small molecules that bind the G4 have been developed, but… Click to show full abstract

The G-quadruplexes (G4s) in the genome are important drug targets because they regulate gene expression and the genome structure. Several small molecules that bind the G4 have been developed, but few artificial G4 binding proteins have been reported. We previously reported a novel DNA G4 binding protein (RGGF) engineered using the Arg-Gly-Gly repeat (RGG) domain of TLS (translocated in liposarcoma), also known as FUS (fused in sarcoma) protein (TLS/FUS). Here, we show that RGGF recognizes DNA loops in the G4 and preferentially binds DNA G4 with long loops in vitro. Furthermore, RGGF binds to the DNA G4 of the bcl-2 promoter in vitro. RGGF overexpression in HeLa cells represses bcl-2 transcription. On the basis of these findings, G4 binding protein engineered from the RGG domain will be useful for investigating G4 transcriptional function in the genome.

Keywords: binding protein; rgg domain; dna; protein

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.