LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promoted Skin Wound Healing by Tail-Amputated Eisenia foetida Proteins via the Ras/Raf/MEK/ERK Signaling Pathway

Photo from wikipedia

Skin wound healing is an important fundamental problem in biological and medical fields. This study aimed to investigate wound healing promotion of protein extract from tail-amputated Eisenia foetida (E. foetida)… Click to show full abstract

Skin wound healing is an important fundamental problem in biological and medical fields. This study aimed to investigate wound healing promotion of protein extract from tail-amputated Eisenia foetida (E. foetida) and reveal the mechanism correlated with the Ras/Raf/MEK/ERK signaling pathway. Proteins extracted from tail-amputated E. foetida were applied on rats’ full-thickness excisional wounds to evaluate their regenerative efficacy. Rat skin tissues around surgical defects were analyzed by immunofluorescence staining and Western blot methods. The Ras/Raf/MEK/ERK signaling pathway was further investigated in vitro using the NIH3T3 cell line. A tail-amputated protein extract (ES2) from E. foetida significantly accelerated rat wound healing ability via higher re-epithelialization and ECM deposition in the tissue section compared to the blank control and un-amputated earthworm extract groups. Furthermore, ES2 treatment dramatically accumulated the expressions of platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), and hydroxyproline (HYP) in wound areas on day 7 without their accumulation on day 21 post-wounding, diminishing excessive scar formation. Accelerated wound healing ability with the ES2 was proved to correlate with the up-regulation of the Ras/Raf/MEK/ERK signaling pathway. The mRNA expression of this pathway increased significantly in NIH3T3 cells after being treated with the ES2 at an appropriate concentration. The tail-amputated E. foetida proteins (ES2) can significantly promote skin wound healing better than the un-amputated earthworm tissue extract without excessive scar tissue formation. This effect was related to the up-regulation of the Ras/Raf/MEK/ERK signaling pathway.

Keywords: raf mek; erk signaling; wound healing; tail amputated; mek erk; ras raf

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.