LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Holey Graphene/Ferroelectric/Sulfur Composite Cathodes for High-Capacity Lithium–Sulfur Batteries

Photo from wikipedia

Lithium–sulfur (Li–S) batteries have attracted considerable interest as next-generation high-density energy storage devices. However, their practical applications are limited by rapid capacity fading when cycling cells with high mass loading… Click to show full abstract

Lithium–sulfur (Li–S) batteries have attracted considerable interest as next-generation high-density energy storage devices. However, their practical applications are limited by rapid capacity fading when cycling cells with high mass loading levels. This could be largely attributed to the inferior electron/ion conduction and the severe shuttling effect of soluble polysulfide species. To address these issues, composites of sulfur/ferroelectric nanoparticles/ho ley graphene (S/FNPs/hG) cathodes were fabricated for high-mass-loading S cathodes. The solvent-free and binder-free procedure is enabled using holey graphene as a unique dry-pressable electrode for Li–S batteries. The unique structure of the holey graphene framework ensures fast electron and ion transport within the electrode and affords enough space to mitigate the electrode’s volume expansion. Moreover, ferroelectric polarization due to FNPs within S/hG composites induces an internal electric field, which effectively reduces the undesired shuttling effect. With these advantages, the S/FNPs/hG composite cathodes exhibit sustainable and ultrahigh specific capacity up to 1409 mAh/gs for the S/BTO/hG cathode. A capacity retention value of 90% was obtained for the S/BNTFN/hG battery up to cycle 18. The high mass loading of sulfur ranging from 5.72 to 7.01 mgs/cm2 allows maximum high areal capacity up to ∼10 mAh/cm2 for the S/BTO/hG battery and superior rate capability at 0.2 and 0.5 mA/cm2. These results suggest sustainable and high-yielding Li–S batteries can be obtained for potential commercial applications.

Keywords: holey graphene; capacity; lithium sulfur; sulfur; composite cathodes; sulfur batteries

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.