We investigated the thermal conductivity of materials based on pyrolysis temperature, filler loading, filler size, and type of biomass feedstock. Hemp stalk and switchgrass were pyrolyzed at 450, 550, and… Click to show full abstract
We investigated the thermal conductivity of materials based on pyrolysis temperature, filler loading, filler size, and type of biomass feedstock. Hemp stalk and switchgrass were pyrolyzed at 450, 550, and 650 °C and crushed into 50, 75, and 100 μm particle sizes. Biocarbon fillers (10, 15, and 20 wt %) were added to the bioepoxy polymer matrix. The study showed increased filler loading and particle size increased thermal conductivity—the biocomposite samples with 20 wt % filler loading of 100 μm particle size of the biocarbon obtained at 650 °C showed the maximum thermal conductivity in both hemp biocarbon-filled composites (0.59 W·m–1·K–1) and switchgrass-filled composites (0.58 W·m–1·K–1) with the highest flame time. Biocarbon in biofiber-reinforced polymer composites can improve thermal conductivity and extend the flame time. These findings significantly contribute to developing hemp-based bioepoxy composite materials for thermal applications in various fields. These include insulating materials for buildings and thermal management systems, energy-efficient applications, and help in material selection and product design with a positive environmental impact.
               
Click one of the above tabs to view related content.