LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Palladium Nanoparticle-Decorated Porous Metal–Organic-Framework (Zr)@Guanidine: Novel Efficient Catalyst in Cross-Coupling (Suzuki, Heck, and Sonogashira) Reactions and Carbonylative Sonogashira under Mild Conditions

Photo by ldxcreative from unsplash

A novel heterogeneous Zr-based metal–organic framework containing an amino group functionalized with nitrogen-rich organic ligand (guanidine), through a step-by-step post synthesis modification approach, was successfully modified by the stabilization of… Click to show full abstract

A novel heterogeneous Zr-based metal–organic framework containing an amino group functionalized with nitrogen-rich organic ligand (guanidine), through a step-by-step post synthesis modification approach, was successfully modified by the stabilization of palladium metal nanoparticles on the prepared UiO-66-NH2 support in order to synthesize the Suzuki–Murray, Mizoroki–Heck, and copper-free Sonogashira reactions and also the carbonylative Sonogashira reaction incorporating H2O as a green solvent under mild conditions. This newly synthesized highly efficient and reusable UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs reported catalyst has been utilized to increase anchoring palladium onto the substrate with the aim of altering the construction of the intended synthesis catalyst to form the C–C coupling derivatives. Several strategies, including X-ray diffraction, Fourier transform infrared, scanning electron microscopy, Brunauer–Emmett–Teller, transmission microscopy electron, thermogravimetric analysis, inductively coupled plasma, energy-dispersive X-ray, and elemental mapping analyzes, were used to indicate the successful preparation of the UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs. In these reactions, the UiO-66-NH2-supported Pd-NPs illustrated superior performances compared to their catalyst, revealing the benefits of providing nanocatalysts. As a result, the proposed catalyst is favorable in a green solvent, and also, the outputs are accomplished with good to excellent outputs. Furthermore, the suggested catalyst represented very good reusability with no remarkable loss in activity up nine sequential runs.

Keywords: catalyst; organic framework; guanidine; microscopy; metal organic

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.