LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exchanging Anion in CuCo—Carbonate Double Hydroxide for Faradaic Supercapacitors: A Case Study

Photo by rgreen from unsplash

A systematic synthetic method involving the anion exchange process was designed and developed to fabricate the superior functioning three-dimensional (3-D) urchin-architectured copper cobalt oxide (CuCo2O4; CCO) and copper cobalt sulfide… Click to show full abstract

A systematic synthetic method involving the anion exchange process was designed and developed to fabricate the superior functioning three-dimensional (3-D) urchin-architectured copper cobalt oxide (CuCo2O4; CCO) and copper cobalt sulfide (CuCo2S4; CCS) electrode materials from copper–cobalt carbonate double hydroxide [(CuCo)2(CO3)(OH)2; CCH]. The effective tuning of chemical, crystalline, and morphological properties was achieved during the derivatization process of CCH, based on the anion exchange effect and phase transformation without altering the 3-D spatial assembly. Benefiting from morphological and structural advantages, CCO and CCS exhibited superior electrochemical activity with capacity values of 1508 and 2502 C g–1 at 10 A g–1 to CCH (1182 C g–1 at 10 A g–1). The thermal treatment of CCH has generated a highly porous nature in nanospikes of 3-D urchin CCO structures, which purveys betterment in electrochemical phenomena than pristine smooth-surfaced CCH. Meanwhile, the sulfurization reaction induced the anion effect to a greater extent in the CCS morphology, resulting in hierarchical 3-D urchins formed by 1-D nanospikes constituting coaxially swirled 2-D nanosheets with high exposure of active sites, specific surface areas, and 3-D electron/ion transportation channels. The asymmetric supercapacitor was constructed with a superior CCS electrode as a cathode and an activated carbon electrode as an anode, showing a high specific capacity of 287.35 C g–1 at 7 A g–1 and durability for 5000 cycles with 94.2% retention at a high current density of 30 A g–1. The ultrahigh energy and power density of 135.3 W h kg–1 (10 A g–1) and 44.35 kW kg–1 (30 A g–1) were harvested during the PC device performance. Our finding proposes an idea about the importance of anions and phase transformation as a versatile tool for engineering high-functioning electrode materials and their endeavor toward overwhelming the major demerit of SCs by aggrandizing the energy density value and rate performance.

Keywords: electrode; cch; ccs; carbonate double; anion; double hydroxide

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.