LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Enhanced Oil Recovery Potential of the Bio-Nano-Oil Displacement System

Photo from wikipedia

Nanoparticles (NPs) have attracted great attention in the tertiary oil recovery process due to their unique properties. As an economical and efficient green synthesis method, biosynthesized nanoparticles have the advantages… Click to show full abstract

Nanoparticles (NPs) have attracted great attention in the tertiary oil recovery process due to their unique properties. As an economical and efficient green synthesis method, biosynthesized nanoparticles have the advantages of low toxicity, fast preparation, and high yield. In this study, with the theme of biotechnology, for the first time, the bio-nanoparticles reduced by iron-reducing bacteria were compounded with the biosurfactant produced by Bacillus to form a stable bio-nano flooding system, revealing the oil flooding mechanism and enhanced oil recovery (EOR) potential of the bio-nano flooding system. The interfacial properties of the bio-nano-oil displacement system were studied by interfacial tension and wettability change experiments. The enhanced oil recovery potential of the bio-nano-oil displacement agent was measured by microscopic oil displacement experiments and core flooding experiments. The bio-nano-oil displacement system with different nanoparticle concentrations can form a stable dispersion system. The oil–water interfacial tension and contact angle decreased with the increase in concentration of the bio-nano flooding system, which also has a high salt tolerance. Microscopic oil displacement experiments proved the efficient oil displacement of the bio-nano-oil displacement system and revealed its main oil displacement mechanism. The effects of concentration and temperature on the recovery of the nano-biological flooding system were investigated by core displacement experiments. The results showed that the recovery rate increased from 4.53 to 15.26% with the increase of the concentration of the system. The optimum experimental temperature was 60 °C, and the maximum recovery rate was 15.63%.

Keywords: system; oil; oil displacement; bio nano; recovery

Journal Title: ACS Omega
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.